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Abstract

During the spring semester, we studied about two different ways to view topological

object. The first one is an algebraic approach. By the notion of fundamental group,

we learned how to calculate the fundamental group of given object such as Seifert-van

Kampen theorem. And those languages helped us to distinguish knots by Wirtinger

presentation, and Alexander polynomial of a given knot.

On the other hand, the second way was an differentiable approach. By the notion

of smooth map and tangent spaces, we learned about smooth manifolds and diffeo-

morphism between them. Regular values and critical values of a smooth map gave us

some nice theorems like Sard-Brown theorem. And those techniques also helped us to

discuss about orientation and degree of a smooth map.

In this project, we will study about one of the cases where the algebraic approach

and differentiable approach coincides, which is called a linking number. At first, by an

algebraic approach, we will define what a linking number is. And we will figure out

some nice properties of a linking number. We will find how to calculate linking number

from the link diagram, and also prove that the linking number is an invariant. By that,

we can distinguish equivalent and non-equivalent links.

After that, we will define linking number from differentiable approach. By defining

a smooth map, we will define a linking number as a degree of a map. And again,

we find some nice properties of it. Later, we will prove that the algebraically defined

linking number and differentiably defined linking number are actually the same.
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1 Introduction, background, and main results

Definition 1.1. A map f : X → Y is called embedding if f : X → f(X) is a

homeomorphism

Definition 1.2. A knot in R3 is the image of an embedding S1 → R3. In other

words, a knot is a simple closed curve in R3

Definition 1.3. An m-component link in R3 is the union of m disjoint oriented

knots in R3

Note that links are oriented. In this paper, we will study about only 2-component

links, which is the most fundamental case. Figures in the below are some examples of a

2-component link.

Definition 1.4. Two knots K and J in R3 are equivalent if there exists a homeo-

morphism h : R3 → R3 such that h(K) = (J).

By choosing how to draw a diagram of link, some equivalent links could be draw in

different way, as the diagram of knots did. Those variations confuses us to distinguish

whether the two links are equivalent or not. For example, three link diagrams in the below

seems to be different.

However, they are equivalent.
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Drawing could be one of the way to distinguish equivalent knots and links, but there are

some problems. One problem is that finding such transforming diagram is not always easy,

and the other problem is that proving two links are not equivalent is much more harder.

But also directly proving from the mathematical definition whether the two knots or

links are equivalent or not is hard. Finding such homeomorphism directly, or proving that

there is no such homeomorphism, is both a challenging problem.

Instead, we learned some invariants which could help distinguishing knots. From the

knot diagram, we could express the fundamental group of complement of knots, which is

called ’Wirtinger presentation’. From that, we could calculate the Alexander polynomial of

a knot. If two Alexander polynomial of given knot diagrams are different, we could con-

clude that two knots are not equivalent. For example, some non-equivalent knots and their

Alexander polynomials are in below.

Note that the inverse is not true : some non-equivalent knots could have same Alexander

polynomial. This tells us that distinguishing the equivalent and non-equivalent knot is still a

challenging problem. However, Alexander polynomial is a powerful technique to distinguish

non-equivalent knots. There are also other polynomial, called ’Jone’s polynomial’, which

was not covered in our class.
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So, like the Alexander polynomial for the knot, we will find an invariant for the 2-

component link to distinguish whether the two 2-component links are equivalent or not.

Those are called linking numbers. At first, by an algebraic approach, we will define what a

linking number is, and find out some nice properties of a linking number. We will learn how

to calculate linking number from the link diagram, and also prove that the linking number is

an invariant. After that, we will define linking number from differentiable approach, which

is a degree of some smooth map. In the end, we will prove that the algebraically defined

linking number and differentiably defined linking number are actually the same.

2 Algebraic definition of the linking number

Definition 2.1. Suppose that K is represented by a knot diagram with n crossings.

AWirtinger presentation of a knot complement is a presentation of a fundamental

group of knot complement where the n generators match with each strands, and n

relators match with each crossing. i.e,

π1(R3 −K) =< x1, x2, · · ·xn | xa1
xc1x

−1
b1

x−1
c1 , · · · , xan

xcnx
−1
bn

x−1
cn >

For every knot diagram, its fundamental group of knot complement can be expressed by

Wirtinger presentation. Note that one of the relators could be deleted, as we learned in the

class.

Theorem 2.2. For any knot K ∈ R3, π1(R3 −K)ab ∼= Z.

Proof. Let n be a number of strand of diagram of K. Denote the Wirtinger presentation

of given diagram by π1(R3 −K) =< x1, x2, · · ·xn | xa1
xc1x

−1
b1

x−1
c1 , · · · , xan

xcnx
−1
bn

x−1
cn >.

After the abelianization, each relator xaixcix
−1
bi

x−1
ci becomes xaix

−1
bi

, which means xai = xbi .

Since every strand of a knot diagram has two endpoints, the generator which corresponds

to the strand is contained in at least two relators, which corresponds to two endpoints.

So, after abelianization, all generators become equal, and no relators are left. Therefore,

the abelianization of π1(R3 −K) becomes < x | · >, which equivalent to the infinite cyclic

group.
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Note that knots could have two kinds of orientations. After the abelianization, a gener-

ator t of π1(R3 −K)ab ∼= Z is canonically determined from the orientation of a knot. It is

enough to consider the orientation of a single strand in knot diagram, since the orientation

of whole knot can be determined by the orientation of a strand. Moreover, since every gen-

erators are same after abelianization, it is enough to look at just one strand to determine

t.

Using the right hand rule, we can choose the generator as the blue arrow in the above

figure. If the orientation of the strand, the red arrow, coincide with the generator like the

left figure case, the generator is same with the original one. If the orientation is reversed

like the right figure case, then we get the generator as the inverse of the original generator.

By those way, we can choose the generator from the orientation.

For any two knot K and J , we can think K ∪ J be the two-component link. Since J

is a simple closed curve in R3 −K, we can think the equivalent class [J ] as a well-defined

element in π1(R3 − K). Let t be the generator of π1(R3 − K)ab ∼= Z. Then, [J ] = tk for

some k.

Definition 2.3. Let K and J be the knots. A linking number lk(K,J) of K∪J is

defined as lk(K,J) = k, where [J ] = tk and t is the generator of π1(R3 −K)ab ∼= Z,

For example, let’s think about the case K = {x2 + y2 = 1} and J = {(x− 3)2 + y2 = 1}.
If we consider π1(R3 −K) with the loops based at (3, 0, 0), J is homotopic to the constant

loop. i.e, [J ] = 1 = t0 ∈ π1(R3 −K), Therefore, by definition, the linking number of K ∪ J

is 0.

Let’s think about this example, which is called the ’Hopf link’. Let K be the left knot

and J be the right knot. If we choose the generator t of π1(R3 −K)ab using the right hand

rule, [J ] = t−1 ∈ π1(R3 −K)ab. Therefore, lk(K,J) = -1.
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Using the similar approach, we could calculate the linking number of many 2-component

link in the above figure. Starting from the left, the linking numbers are -2, -1, 0, 1, 2, 3

respectively.

Theorem 2.4. For a knot K, denote K with reversed orientation by Kr. Then

lk(K,Jr) = −lk(K,J) = lk(Kr, J)

Proof. Let lk(K,J) = k and t be the generator of π1(R3−K)ab. Then, [J ] = tk by definition.

Since the generator induced by the reversed orientation is the inverse of the original gener-

ator, [J ] = t−1×(−k) in π1(R3 −Kr)ab. Therefore, lk(K
r, J) = −k = −lk(K,J). Moreover,

[Jr] = [J ]−1 in π1(R3 −K)ab since [J ][Jr] = [J · Jr] = 1. Therefore, [Jr] = [J ]−1 = t−k, so

lk(K,Jr) = −k = −lk(K,J).

Definition 2.5. The sign of a crossing c in a link diagram is defined to be sign c =

+1(resp, sign c = −1) it it looks like

The following theorem shows how to calculate the linking number of a link easily by the

sign from its diagram.

Theorem 2.6. lk(K,J) = 1
2

∑
c sign c, where c varies over crossings between K and

J . Self-crossings of K and self-crossings of J are ignored.

Proof. Let the red line as a strand of K and blue line as a strand of J , every crossing in a

diagram is one of the cases below.

Denote the each case from 1 to 4. And let ni be the number of case i in the link diagram.

Then, n1 + n2 − n3 − n4 =
∑

c sign c.

If every crossing of a diagram is case 1 or 4, K is always in the behind of J , which means

those two are unlinked. Then the linking number will be 0 in this case.
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Now, suppose there are only one crossing of case 2, and other crossings are case 1 and

4. If we fix a basepoint x0 of π1(R3 −K) on the J , J itself becomes the loop based at x0.

The situation will be like below.

Then, let’s think about another loop L based at x0 as the figure below.

Then, if we multiply L with the new loop with deep blue color in the figure below,

It is same with the original loop J , as we can see

Note that the deep blue loop and K are unlinked. So,

[J ] = [Deep blue loop · L] = [Deep blue loop][L] = 1 · [L] = [L] in π1(R3 −K)ab

This could be applied if there are multiple crossing of case 2. Also, crossing of case 3

can be figured out in the same way. Let L′ be the loop made in case 3 which roles same

with L in case 2, like the figure below.
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Then, if we do the same procedure for every crossing point of case 2 and case 4, n2

equals to the number of such loops like L, and n3 equals the number of such loops like

L′. If we let t be the generator of π1(R3 − K)ab, then [L] = t and [L′] = t−1. Therefore,

[J ] = [L]n2 [L′]n3 = tn2t−n3 = tn2−n3 . Which means lk(K,J) = n2 − n3.

Similarly, if every crossing is case 2 and 3, K and J are unlinked. If we do the same

procedure starting from that case, then we get lk(K,J) = n1−n4. So, lk(K,J) = n1−n4 =

n2 − n3, therefore lk(K,J) = 1
2 (n1 + n2 − n3 − n4) =

1
2

∑
c sign c

Now, if we revisit the example of a Hopf link, we could check that the theorem actually

works well since −1−1
2 = −1.

Theorem 2.7. lk(K,J) = lk(J,K)

Proof. Let’s denote the number of case 1-4 crossing as n1 · · ·n4, in lk(K,J), and denote

the number of case 1 - 4 crossing as n′
1 · · ·n′

4 in lk(J,K). Then, n1 = n′
2 and n2 = n′

1

since nothing changes but the order of who comes first change. Also, n3 = n′
4 and n4 = n′

3.

Therefore, lk(K,J) = 1
2 (n1 + n2 − n3 − n4) =

1
2 (n

′
2 + n′

1 − n′
4 − n′

3) = lk(J,K).

Definition 2.8. Two links K ∪ J and K ′ ∪ J ′ in R3 are equivalent if and only

if there exists a orientation-preserving homeomorphism ϕ : R3 → R3 such that

ϕ(K ∪ J) = K ′ ∪ J ′
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Theorem 2.9. If two links K ∪ J and K ′ ∪ J ′ are equivalent, then lk(K,J) =

lk(K ′, J ′)

Proof. Since K ∪J and K ′ ∪J ′ are equivalent, there exists an orientation-preserving home-

omorphism ϕ : R3 → R3 such that ϕ(K ∪ J) = K ′ ∪ J ′. If we restrict this home-

omorphism ϕ to ϕ′ : R3 − K → R3 − K ′, it is still an orientation-preserving homeo-

morphism and satisfies ϕ′(J) = J ′. Then, this homeomorphism induces an isomorphism

π1(ϕ
′) : π1(R3 −K) → π1(R3 −K ′). If we let t, t′ be the generators of π1(R3 −K)ab and

π1(R3 −K ′)ab respectively, π1(ϕ
′)(t) = t′ since ϕ′ preserves the orientation.

Let [J ] = tk ∈ π1(R3 − K)ab where k = lk(K,J). Then, π1(ϕ
′)([J ]) = π1(ϕ

′)(tk) =

(π1(ϕ
′)(t))k = (t′)k. Since π1(ϕ

′)([J ]) = [J ′], we conclude that [J ′] = (t′)k, which means

lk(K,J) = k = lk(K ′, J ′).

This theorem shows that the linking number is an invariant, which means we could

distinguish whether two links are equivalent or not by computing the linking number.

3 Differential definition of the linking number

Before discussing about linking numbers, let’s review what we have learned in the class. Let

M ⊂ Rk and N ⊂ Rℓ be the smooth manifolds. Then, M×N ⊂ Rk+ℓ is a smooth manifold.

Let M and N have dimension m and n respectively. When M and N are oriented by bases

(b1, b2, · · · , bm) and (b′1, b
′
2 · · · b′n) of TMx and TNy, then M × N is oriented by the basis

(b1, b2, · · · , bm, b′1, b
′
2 · · · b′n) of T (M ×N)(x,y) = TMx × TNy.

Now, suppose K ∪ J is a 2-component link. Let’s define a map ΦK,J : K × J → S2 as

follows :

ΦK,J(x, y) =
x−y

||x−y||

Definition 3.1. ℓ(K,J) = deg ΦK,J

Note that K and J are compact smooth manifolds of dimension 1. Moreover, K × J is

oriented as a product as above, and S2 is oriented as the boundary of D3

Theorem 3.2. ℓ(K,J) = ℓ(J,K)

Proof. Let K and J be oriented by the basis {b} and {b′} of TKx and TJy respectively.

Then, K × J is oriented by the basis {b, b′} of TKx × TJy, and J × K is oriented by the

basis {b′, b} of TJy × TKx. Then, a map ϕ : K × J → J ×K defined by h(x, y) = (y, x) is

9



an orientation-reversing homeomorphism since K × J and J ×K have different orientation.

Since ΦK,J = −ΦJ,K ·ϕ, deg ΦK,J = −deg (ΦJ,K ·ϕ) = −deg ΦJ,K ·deg ϕ = −deg ΦJ,K×−1 =

deg ΦJ,K . Therefore ℓ(K,J) = deg ΦK,J = deg ΦJ,K = ℓ(K,J).

Theorem 3.3. Suppose there is an oriented surface Σ in R3 −K such that ∂Σ = J .

Then ℓ(K,J) = 0

Proof. Since Σ and K are disjoint, we can think about some extended map Φ′
K,Σ : K×Σ →

S2 as Φ′
K,Σ(x, y) = x−y

||x−y|| , which is a smooth extension of Φ. Since K is a 1-dimension

manifold without boundary, ∂(K × Σ) ∼= K × ∂Σ = K × J . Now, ΦK,J : K × J → S2 is

smooth on the boundary K × J = ∂(K × Σ). This can be smoothly extended to K × Σ.

Therefore, this implies that deg ΦK,J = ℓ(K,J) = 0.

Let’s apply this theorem to the example below.

If we think K be a blue knot and J be a purple knot, then we can attach an oriented

surface Σ to J like the figure below.

So, by theorem 3.3, ℓ(K,J) = 0. Note that lk(K,J), defined in section 2 is also 0, which

can be easily calculated by theorem 2.6. This is not a coincidence.
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Theorem 3.4. lk(K,J) = ℓ(K,J)

Proof. Let (x, y, z) ∈ K and (a, b, c) ∈ J . Then,

ΦK,J((x, y, z), (a, b, c)) =
(x−a, y−b, z−c)√

(x−a)2+(y−b)2+(z−c)2

If we fix (a, b, c) and differentiate for (x, y, z), then

dΦK,J = 1
((x−a)2+(y−b)2+(z−c)2)(3/2)

 1 + (x− a)2 (x− a)(y − b) (z − c)(x− a)

(x− a)(y − b) 1 + (y − b)2 (y − b)(z − c)

(z − c)(x− a) (y − b)(z − c) 1 + (z − c)2


Then, the determinant becomes

det(dΦK,J) =
1+(x−a)2+(y−b)2+(z−c)2

((x−a)2+(y−b)2+(z−c)2)(3/2)

Since the determinant is always positive, there is no critical point. By the similar way, we

could get the same result when we fix (x, y, z) and differentiate for (a, b, c). Since TM(X ×
Y )x,y ∼= TMx × TMy, Φ : K × J → S2 has no critical point.

Now, suppose K is the blue strand and J is the red strand in the figure below. As we

discussed in the theorem 2.6, there are four cases of crossing in the diagram of K ∪ J .

We can think a link diagram as an orthogonal projection of the link to the plane per-

pendicular to unit vector u ∈ S2. Then, u is a regular value since Φ : K × J → S2 has no

critical point. Also, if we fix u as a direction of going down to the plane, the preimages of

u are from the second and third case in the crossing, where J is higher than K.
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First, let’s consider the case 2. Let (α, β) be the preimage of u, which are the points on

K and J respectively. Let {t} and {s} be the basis of TKα and TJβ . Then, {t, s} is an

oriented basis of T (K×J)α,β . Then, dΦ locally preserves the orientation near (α, β) by the

right hand rule. So, deg dΦ(α,β) = 1. Similarly, for the third case, deg dΦ(α,β) = −1 since

the basis of TMβ is reversed, so dΦ(α,β) reverses the orientation.

If we let n2 and n3 be the number of second and third case of crossing, then ℓ(K,J) =

deg ΦK,J = n2 − n3 = lk(K,J) as we mentioned in the proof of theorem 2.6.

So, the algebraic and differential approach for linking number were actually same!

Note that the converse of the theorem 3.3 is not be true. i.e, some 2-component link with

ℓ(K,J) = 0 might not have an oriented surface whose boundary is J . Here’s an example.

By theorem 2.6, we could easily check that lk(K,J) = ℓ(K,J) = 0

However, if we think blue knot as J and red knot as K, there are two possibilities to

attach an oriented surface with boundary J : filling the space between circle, or constructing

a new surface along J . The first possibility is like below.
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But filling the space in this way needs a Mobius band, which is not oriented. The second

possibility is like below, which is impossible.

So, the converse of theorem 3.3 is generally not true.
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