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In combinatorics, especially on graph theory, walk is one of the main research
subject. Combinatorial approaches about the subject are quite useful, but algebraic
approach gives us some new ideas. The goal of this project is to describe walks in
graph by using algebraic language. Concepts in linear algebra such as basis, eigenvalue,
eigenvector, orthogonal matrix, diagonalize, and their properties are required.

1 Walks in graph

Definition 1. For a finite undirected graph G with vertex V = {v1, v2, · · · vp} and edge
E = {e1, e2, · · · , eq}, an adjacency matrix A(G) of a graph G is a p × p matrix such that
(i, j)-th entry is equal to the number of edges connecting two vertex vi and vj.

For example, if we have a graph G as a figure below,
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we could get the adjacency matrix as

A(G) =


2 2 0 1
2 1 2 1
0 2 0 1
1 1 1 1


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Definition 2. A walk in a graph G of length ` from vertex u to v is a sequence v1 = u, e1,
v2, e2, v3 · · · , v`, e`, v`+1 = v such that each ei is a vertex connecting vi and vi+1.

Let’s observe the matrix A(G). When we multiply this matrix ` times, each (i, j)-th
entry will be

(A(G)`)ij =
∑

aik1ak1k2 · · · akl−1j

What does this mean? each k1, k2, · · · , k`−1 denote one of the vertices in a graph, and
akmkn means the number of edges connecting vertex vkm and vkn . So, we could observe that
the (i, j)-th entry of the matrix A(G)l means the number of walks from vi to vj with length
`

Obviously, A(G) is a p×p real symmetric matrix for any graph G, since the entry aij and
aji are equal by definition. Therefore, A(G) has real eigenvalues, and has p independent real
eigenvectors, and also diagonalizable. If we choose such eigenvector as orthonormal vectors,
the matrix generated by those eigenvectors will be an orthogonal matrix.

Denote u1, u2, · · · , up be the real orthonormal eigenvectors of A(G) with corresponding
eigenvalues λ1, λ2, · · · , λp. Then the matrix U = [u1 u2 · · · up] is an orthogonal matrix. i.e,
UT = U−1. Thus, U diagonalizes A(G) as

U−1A(G)U = diag(λ1, λ2, · · · , λp)

Theorem 1.1. For any integer ` ≥ 1, the (i, j)-th entry of a matrix A(G)` is equal to the
number of walks from vi to vj with length `. Moreover, if we denote U = (uij),

(A(G)`)ij =

p∑
k=1

uikλ
`
kujk

Proof. It is obvious from the observation that the (i, j)-th entry of a matrix A(G)` is equal
to the number of walks from vi to vj with length `. Moreover,

U−1A(G)`U = diag(λ1`, λ
`
2, · · · , λ`p).

Therefore,

A(G)` = Udiag(λ`1, λ
`
2, · · · , λ`p)U−1

which directly shows our conclusion. Note that the latter matrix in the upper equation is
U−1 = UT , so u−1

kj = ujk
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Now, a closed walk is a walk that ends where it begins. It is straightforward that the
number of closed walk with length ` in G is equal to

p∑
i=1

(A(G)`)ii = tr(A(G)`)

Since the trace of square matrix is equal to the sum of eigenvalues, we could conclude
the following.

Theorem 1.2. If A(G) has eigenvalues λ1, λ2, · · · , λp, the number of closed walks in G of
length ` is equal to

λ`1 + λ`2 + · · ·+ λ`p

Now, let’s apply this theorem to some examples. The most simple example is a complete
graph.

Definition 3. A complete graph Kp is a graph with vertex V = {v1, v2, · · · vp} and there
exists only one edge between any two distinct vetrices.

Applying the above theorem, we could conclude the following.
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Theorem 1.3. The number of closed walks of length ` in a complete graph Kp starting and
ends at a vertex i is

(A(Kp)
`)ii =

1

p
((p− 1)` + (p− 1)(−1)`)

Proof. The adjacency matrix A(Kp) is equal to J − I, where J is a p × p matrix with all
entry 1, and I is an identity p× p matrix.

Since the eigenvalue of J is p (with multiplicity 1) and 0 (with multiplicity p − 1), the
eigenvalues of A(Kp) = J − I is p− 1 (with multiplicity 1) and -1 (with multiplicity p− 1).
Applying Theorem 1.2 gives the number of total closed walks of length ` in G. Therefore,
by symmetry, dividing with p concludes the result.

The reference book mentioned that the combinatorial proof is quite tricky. But actually
it is quite simple. Here’s an alternative proof of the Theorem 1.3

Proof. Let’s think that some people is moving along a closed walk. If the closed walk of
length ` starts and ends at vertex i, it means that the people who was initially at vertex i
moved ` times and come back to i.

To be at vertex i after `th movement, that person could be at any vertex except i after
l − 1th movement. So, if we denote A(`) as the number of closed walks of length ` in a
complete graph Kp starting from vertex i,

A(`) = (p− 1)l−1 − A(`− 1)

since the number of possible walk of length `− 1 on Kp is (p− 1)`−1, by choosing which
vertex to go among all vertex except the vertex where the person is in at each movement.

If ` is even,

A(`) + A(`− 1) = (p− 1)`−1

−A(`− 1)− A(`− 2) = −(p− 1)`−2

A(`− 2) + A(`− 3) = (p− 1)`−3

−A(`− 3)− A(`− 4) = −(p− 1)`−4

...

−A(3)− A(2) = −(p− 1)2

A(2) + A(1) = (p− 1)1
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Summing up, we get

A(`) + A(1) =
`−1∑
k=1

(−1)k+1(p− 1)k =
1

p
((p− 1)` + (p− 1))

Because there is no loop in a complete graph, A(1)=0. Similarly, if ` is odd,

A(`) + A(`− 1) = (p− 1)`−1

−A(`− 1)− A(`− 2) = −(p− 1)`−2

A(`− 2) + A(`− 3) = (p− 1)`−3

−A(`− 3)− A(`− 4) = −(p− 1)`−4

...

A(3) + A(2) = (p− 1)2

−A(2)− A(1) = −(p− 1)1

Summing up, we get

A(`)− A(1) = A(l) =
`−1∑
k=1

(−1)k(p− 1)k =
1

p
((p− 1)` − (p− 1))

How about non-closed walk? Since I and J commute, using (generalized) binomial the-
orem, we could denote A(Kp)

` as follows :

A(Kp)
` = (J − I)` =

∑̀
k=0

(
`
k

)
Jk(−I)`−k

=
∑̀
k=0

(−1)`−k
(
`
k

)
pk−1J

= (−1)`I +
∑̀
k=1

(−1)`−k
(
`
k

)
pk−1J

=
1

p
((p− 1)` − (−1)`)J + (−1)`I
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Therefore, if i 6= j,

(A(Kp)
`)ij = (J − I)`ij =

1

p
((p− 1)` − (−1)`)

Of course,

(A(Kp)
`)ii = (J − I)`ii =

1

p
((p− 1)` − (−1)`) + (−1)`

=
1

p
((p− 1)` + (p− 1)(−1)`)

2 Cubes and the Radon Transformation

Now, let’s think about more complicated graph.

Definition 4. A n-cube is a graph Cn with vertex V (Cn) = Zn
2 and two vertex are connected

by an edge if they differ in exactly one component.

Of course, we could directly apply the theorem in the former section, but let’s use some
algebaric technique. Let V = {f : Zn

2 → R}, which is a vector space over R of dimension
2n. (You could easily check conditions of being a vector space) Now, let’s think some basis
of this vector space.

For each u ∈ V (Cn) = Zn
2 ,

Basis 1 :

fu(v) = δuv =

{
1 if u = v

0 otherwise
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Basis 2 :

χu(v) = (−1)u·v

It is easy to check that those two are the basis. (Note that for any f, g ∈ V , < f, g >=∑
u∈Zn

2
f(u)g(u)) Actually, basis 1 is somewhat we could normally imagine. i.e. for any

g ∈ V ,

g =
∑
u∈Zn

2

g(u)fu

since the domain of g is discrete and finite. However, it is no easy to directly imagine
how does the basis 2 actually look like. So, what we are gonna do is to find some linear
transformation between those two basis.

Definition 5. For a subset Γ ⊂ Zn
2 and a function f ∈ V, the Radon Transformation

of f is a function ΦΓf : V → V

ΦΓf(v) =
∑
w∈Γ

f(v + w)

It is almost obvious from the definition that the Radon transformation is a linear trans-
formation, so it could be represented as a matrix. Then, we have the following theorem (as
we wanted).

Theorem 2.1. χu is the eigenvectors of ΦΓ. Moreover, the corresponding eigenvalues λu
such that ΦΓχu = λuχu is given by

λu =
∑
w∈Γ

(−1)u·w

Proof.

ΦΓχu(v) =
∑
w∈Γ

χu(v + w)

=
∑
w∈Γ

(−1)u·(v+w)

= (
∑
w∈Γ

(−1)u·w)(−1)u·v

= (
∑
w∈Γ

(−1)u·w)χu(v)
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Now, let ∆ = {δ1, δ2, · · · , δn} such that δi = (δi1, δi2, · · · , δin). Then, Φ∆fu : V → V is a
linear transformation, and let [Φ∆] be the matrix representation with respect to the Basis 1.

Theorem 2.2. [Φ∆] = A(Cn)

Proof. Let v ∈ Zn
2 . Since u = v + w iff u+ w = v in Zn

2 ,

Φ∆fu(v) =
∑
w∈∆

fu(v + w)

=
∑
w∈∆

fu+w(v)

so,

Φ∆fu =
∑
w∈∆

fu+w

Note that u+ v ∈ ∆ iff u and v are different in exactly one coordinate, which is exactly
the condition to be an edge of Cn. Moreover,

[Φ∆]u,v = 1↔ Φ∆fu = · · ·+ 1 · fv + ·
↔ u+ w = v and w ∈ ∆

↔ u+ v ∈ ∆

So, we get

[Φ∆]u,v =

{
1 if u+ v ∈ ∆

0 otherwise

This theorem means that the matrix representation of Φ∆ with respect to the Basis 1 is
equal to the matrix representation of A(Cn) with respect to the vertices of V (Cn) = Zn

2 . So,
by using above tho theorems, we could get the following. (I’m not gonna prove it rigorously,
because this is a Glimpse in algebraic combinatorics, not a linear algebra class)

Theorem 2.3. For each u ∈ Zn
2 , the eigenvectors Eu of A(Cn) are given by

Eu =
∑
v∈Zn

2

(−1)u·vv

and the corresponding eigenvalue λu is

λu = n− 2w(u)

where w(u) is the number of 1’s in u. In other words, A(Cn) has eigenvalue n − 2i with
multiplicity

(
n
i

)
for each 0 ≤ i ≤ n
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Now, we have eigenvalues, eigenvectors, so we found everything to use theorem 1.1

Theorem 2.4. Let u, v ∈ Zn
2 and w(u+ v) = k. Then the number of walks of length l in Cn

between u and v is given as

(Al)uv =
1

2n

n∑
i=0

k∑
j=0

(−1)j
(
k

j

)(
n− k
i− j

)
(n− 2i)l

The reference book mentioned that the combinatorial proof of this theorem is possible,
but very long and hard. Instead, let’s find some combinatorial proof of some special case :

(Al)uu =
1

2n

n∑
i=0

(
n

i

)
(n− 2i)l

Proof. On the n-cube, let’s denote move as i if the movement increases the i-th coordinate
by 1, −i if the movement decreases the i-th coordinate by 1. Then, the set of all possible
movements will be

1, −1, 2, −2, · · ·n, −n

and the walk of length ` on n-cube can be written as a word of length ` generated by
those number-letters. It is obvious that if i appeared in a word, i could not appear again
until −i appears.

How can we describe a closed walk? A closed walk is described as a word such that for
each i ∈ {1, 2, · · ·n}, if we delete every letters which does not contain i, the left letters will
be like

i, −i, i, −i, · · · i, −i

Of course, starting from whether i or −i depends on where we start. Without loss of
generality, let’s suppose the walk starts and ends from (0, 0, · · · , 0)

Then, we can think a closed walk as a figure below
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In the each box, balls are already ordered in such way we want. And we just choose
which box to get the ball. Of course, the total number of balls from each box must be even.
Suppose we picked 2ki balls for each i. Then, the number of ordering is

∑
2k1+2k2+···+2kn=`

`!

(2k1)!(2k2)! · · · (2kn)!
= `!

∑
∑

2ki=`

n∏
i=0

1

(2ki)!

It is hard to calculate this number. Instead, let’s express these numbers as a exponential
generating function. Then the exponential generating function will be

f(x) =
∞∑
`=0

(
∑

∑
2ki=`

n∏
i=0

1

(2ki)!
)x`

=
n∏

i=0

∞∑
ki=0

x2ki

(2ki)!

= (
∞∑
k=0

x2k

(2k)!
)n

= (
ex + e−x

2
)n =

1

2n

n∑
i=0

(
n

i

)
e(n−2i)x

10



So the number we want is the coefficient of x`

`!
.

1

2n

n∑
i=0

(
n

i

)
e(n−2i)x =

1

2n

n∑
i=0

(
n

i

) ∞∑
k=0

(n− 2i)k

k!
xk

which is shown as

1

2n

n∑
i=0

(
n

i

)
(n− 2i)`

Not a short proof, but the main idea is quite interesting.
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