
Math 466/564: Applied Random Processes Class Report

Stochastic Chemical Reaction Networks

Spring 2024 By: Seokhwan Moon (sm139@illinois.edu)

1 Introduction

Chemical reaction network (CRN) theory is a disciplinary area between mathematics and systems
biology. The main goal for this area is to know the properties of dynamical system only from its
network structure alone.

Starting from the toy example, let’s think about the following chemical reaction

2H2 +O2 −→ 2H2O

Here, H2, O2, H2O are molecules, which is the basic unit for biochemical interactions. In CRN,
we call them species. So, the above chemical reaction can be written as

2A+B −→ 2C

And when we think the reaction as a directed edge, what corresponds to the vertex is called a
complex. So generally speaking, CRN is described with three sets : species S , complexes C ,
and reactions R where

• S : Chemical species (i.e. molecules)

• C : Non-negative linear combination of species that reactions interact (reactant and products)

• R : Reactions that one complex is converted to another.

For example, if we think about the following set of reactions,

A+B −→ 2B (1)

B −→ A (2)

2B −→ A+B (3)

Then the sets are

S = {A, B}
C = {A+B, 2B, B, A}
R = {A+B → 2B, B → A, 2B → A+B}

And when we graphically describe this reactions, we do not make one complex to appear several
times. i.e., it can be graphically described as

A+B ↼−−⇁ 2B

B −→ A
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2 Formulation of continuous-time Markov chain

There are two ways to model biochemical reaction - one by ODE which describes the concentration,
and other one by continuous-time Markov chain which described the number of molecules. In this
report, we will focus on continuous-time Markov chain.

When we look at the reaction, there are two things we could ask.

• How does this reaction changes the state?

• How fast does the reaction fires?

For the first question, the state space I becomes

I = Z|S |
⩾0

and each reaction has a stoichiometric vector, which is

c1X1 + c2X2 + · · ·+ cmXm → c′1X1 + c′2X2 + · · ·+ c′mXm : (c′1 − c1, · · · , c′m − cm)T

For the example (1),

I = Z2
⩾0

A+B −→ 2B : (−1, 1)T

B −→ A : (1, − 1)T

2B −→ A+B : (1, − 1)T

For the second question, the most general (but not the only) choice is the mass-action kinetics,
which defines the reaction rate as

c1X1 + c2X2 + · · ·+ cmXm → · · · : kn1(n1 − 1) · · · (n1 − c1 + 1) · · ·nm(nm − 1) · · · (nm − cm + 1)

= k
n1!

(n1 − c1)!

n2!

(n2 − c2)!
· · · nm!

(nm − cm)!

where ni denotes the number of Xi. We can notice that if ni is less than ci, then the reaction rate
becomes zero, which means that the reaction does not fires.

By these description, we can construct a continuous-time Markov chain. For example, when we
think the following reaction network

0
k1−→ A (4)

0
k2−→ B (5)

A
k3−→ B (6)

B
k4−→ 0 (7)

A+B
k5−→ 2C (8)

2C
k6−→ A+B (9)
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then the state space becomes

I = {(a, b, c) | a, b, c ∈ Z⩾0} = Z3
⩾0

and the Q-matrix becomes

Q(a1,b1,c1),(a2,b2,c2) =



k1 if a2 = a1 + 1, b2 = b1, c2 = c1

k2 if b2 = b1 + 1, a2 = a1, c2 = c1

k3a1 if a2 = a1 − 1, b2 = b1 + 1, c2 = c1

k4b1 if a2 = a1, b2 = b1 − 1, c2 = c1

k5a1b1 if a2 = a1 − 1, b2 = b1 − 1, c2 = c1 + 2

k6c1(c1 − 1) if a2 = a1 + 1, b2 = b1 + 1, c2 = c1 − 2

−(k1 + k2 + k3a1 + k4b1 if a2 = a1,

+ k5a1b1 + k6c1(c1 − 1)) b2 = b1, c2 = c1

0 otherwise

In terms of biology, it is important for such continuous-time Markov chain to be positive recurrent
and having a convergent stationary distribution. We could easily imagine that if some biochemical
reaction networks in our body is either transient or null recurrent, then the number of some chemical
species will blow up, which will cause serious problems in our body.

3 Deficiency zero theorem

Definition 1. Suppose that we represent the CRN by the way that no complexes appear twice. We
say the CRN is weakly reversible when we pick any two complex c1, c2 such that there exists
reaction c1 → c2, then there always exists the path from c2 to c1 connected by some reactions.

For example, we can represent the CRN from the previous example (4) as the following

0 A

B

A+B 2C

Then, we can check that this CRN is weakly reversible. For example, there is a reaction 0 → A,
then there is a path of reactions A → B → 0.

Definition 2. The stiochiometry space S is the vector space spanned by the stoichiometric
vectors.

Definition 3. The deficiency δ of the CRN is defined as

δ = n− ℓ− s

where n is the number of complexes, ℓ is the number of linkage class, and s = dim(S)
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For example, when we calculate the deficiency of the previous example (4),

• n = 5

• ℓ = 2

• s = dim(span{(1, 0, 0), (0, 1, 0), (0,−1, 0), (−1, 1, 0), (−1,−1, 2), (1, 1,−2)}) = 3

therefore δ = 0.

Theorem 1. [1] Suppose that the CRN has deficiency zero and weakly reversible. Then the cor-
responding continuous-time Markov chain is positive recurrent and has a stationary distribution
consisting of the product of Poisson distributions,

π(x) =

m∏
i=1

cxi
i

xi!
e−ci , x ∈ Zm

⩾0 (10)

Also, if Zm
⩾0 is irreducible, then this is the unique stationary distribution. If Zm

⩾0 is not irreducible,
then the stationary distribution has the form on the state space Γ

πΓ(x) = MΓ

m∏
i=1

cxi
i

xi!
e−ci , x ∈ Γ (11)

where πΓ(x) = 0 if x /∈ Γ, and MΓ is the normalizing constant.

By applying this theorem, we can know that the CRN (4) is positive recurrent and the probability
distribution converges to its stationary distribution, which is the product-form of Poisson distri-
butions (Notice that Zm

⩾0 is not irreducible since the number of C always changes by two units,
therefore the distribution Fig. 2c is not exactly Poisson distribution). The proof of this theorem
needs large amount of background knowledge, so we omit here.

Performing the numerical simulation of the previous example (4) (by the Gillespie’s algorithm [2])
shows the following trajectory and stationary distributions, which coincides with the theorem.

(a) Species A (b) Species B (c) Species C

Figure 1: Time-trajectory of 20 simulations of (4)
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(a) Species A (b) Species B (c) Species C

Figure 2: Stationary distribution of 5000 simulations of (4)

4 Conclusion

In this report, we have a slight overview about stochastic chemical reaction network, which shows
how the continuous-time Markov chain can be applied to systems biology. The importance of
stochastic CRN increases as the synthetic biology is developed, so that we could construct any
biochemical reaction we want. For instance, one of the previous research suggested the structure
of biochemical reactions to obtain some property in continuous-time Markov chains, and showed
by experiment that the property can be really satisfied in real biological systems [3, 4]. It would
be interesting to explore other properties of CRN and realize it by synthetic biology.
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