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Abstract

During the semester, we were mainly focused on the population dynamics in mathematical biology in
class. In this report, I will focus on molecular-level biochemical reactions for mathematical biology. There
are two ways to model molecular-level biochemical interactions - one using ODE to describe concentrations,
and other using continuous-time Markov chain to describe number of molecules. The former description is
easy to analyze, but hard to describe the randomness of molecular-level interactions. On the other hand, the
latter description could describe the randomness of molecular-level interactions, but hard to analyze. In this
report, I will introduce both deterministic and stochastic chemical reaction network theory, and highlight the
important research topics and results for this area.

1 Introduction
In recent decades, the synthetic biology has made significant strides. From the viewpoint of systems biol-

ogy, the biological objects have been conceptualized as ’machines’, and the technology for constructing and
manipulating these ’machines’ has gained importance. Today, we could construct artificial living entities with
synthetic biochemical reactions. These advancements are applied across various areas such as programming
language using bio-computing, creating a new organ, etc. Given these technological backdrop, it is important
to construct biochemical reactions in order to realize desired properties.

Chemical Reaction Network (CRN) theory is a subarea of mathematical biology connecting mathematics
and systems biology. The main goal of this area is to know about the dynamical properties of biochemical
reactions only from its network structure alone. By knowing this, we can easily get how to construct biochemical
reactions to obtain typical dynamical properties.

In this report, I will give a brief introduction about CRN. This report will not discuss about the detailed
mathematical proofs of the theorem. Besides, we will look for how biochemical reaction can be mathematically
modeled, and which research topics are being discussed in recent years.

2 Deterministic chemical reaction network

2.1 Backgrounds
Starting from the toy example, let’s think about the following chemical reaction

2H2 +O2 −→ 2H2O

Here, H2, O2, H2O are molecules, which is the basic unit for biochemical interactions. In CRN, we call them
species. So, the above chemical reaction can be written as

2A+B −→ 2C

And when we think the reaction as a directed edge, what corresponds to the vertex is called a complex. So
generally speaking, CRN is described with three sets : species S , complexes C , and reactions R where

• S : Chemical species that are the basic unit of biochemical interactions (i.e. molecules, proteins, etc)

• C : Non-negative linear combination of species that reactions interact (reactant and products)

• R : Reactions that one complex is converted to another.

1



For example, if we think about the following set of reactions,

A+B −→ 2B

B −→ A

2B −→ A+B

Then the sets are

S = {A, B}
C = {A+B, 2B, B, A}
R = {A+B → 2B, B → A, 2B → A+B}

And when we graphically describe this reactions, we do not make one complex to appear several times. i.e., it
can be graphically described as

A+B ↼−−⇁ 2B

B −→ A

In deterministic CRN, we model the concentration of each chemical species. For example, when we denote
r1 the rate of the reaction A+B → 2B,

d[A]

dt
= −r1

d[B]

dt
= r1

since A+ B → 2B decreases one A and increases one B. If we write the reaction rate for other two reactions
as r2 and r3, then the full equations becomes

d[A]

dt
= −r1 + r2 + r3

d[B]

dt
= r1 − r2 − r3

rewriting this becomes

d

dt

[
[A]
[B]

]
=

[
−1 1 1
1 −1 −1

]r1r2
r3

 (1)

we can notice that each column of the matrix corresponds to the net change of chemical species for each
reactions. We call each vectors stoichiometric vector. In general,

c1X1 + c2X2 + · · ·+ cmXm → c′1X1 + c′2X2 + · · ·+ c′mXm : (c′1 − c1, · · · , c′m − cm)T

Also, we call the matrix whose column consists of stiochiometric vector as stoichiometric matrix.
One might ask how can we determine the rate r1, r2, r3. The most general choice is mass-action kinetics,

which defines the reaction rate as

c1X1 + c2X2 + · · ·+ cmXm → · · · : k[X1]
c1 [X2]

c2 · · · [Xm]cm

but this is not the only choice. There are other kinetic laws such as Michaelis–Menten kinetics, Power-law
kinetics, etc. The only rule is that the kinetic law is the function only from its reactants, i.e.,

c1X1 + c2X2 + · · ·+ cmXm → · · · : f(k, [X1], [X2], · · · [Xm])

and there is one parameter k, which is determined by many environmental factors such as the activity of enzyme,
temperature, volume, other conditions, etc.
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2.2 Deficiency Zero theorem : Existence of stable steady-state from the structure
Definition 1. Suppose that we represent the CRN by the way that no complexes appear twice. We say the CRN
is weakly reversible when we pick any two complex c1, c2 such that there exists reaction c1 → c2, then there
always exists the path from c2 to c1 connected by some reactions.

For example, consider the following CRN.

0
k1−→ A

0
k2−→ B

A
k3−→ B

B
k4−→ 0

A+B
k5−→ 2C

2C
k6−→ A+B

(2)

then we can represent the CRN as the following

0 A

B

A+B 2C

Then, we can check that this CRN is weakly reversible. For example, there is a reaction 0 → A, then there is a
path of reactions A → B → 0.

Definition 2. The stiochiometry space S is the vector space spanned by the stoichiometric vectors. And the
stoichoimetric compatibility class is S + s0 where s0 denotes the initial concentrations.

Definition 3. The deficiency δ of the CRN is defined as

δ = n− ℓ− s

where n is the number of complexes, ℓ is the number of linkage class, and s = dim(S)

For example, when we calculate the deficiency of the previous example (2),

• n = 5

• ℓ = 2

• s = dim(span{(1, 0, 0), (0, 1, 0), (0,−1, 0), (−1, 1, 0), (−1,−1, 2), (1, 1,−2)}) = 3

therefore δ = 0.

Theorem 1. [1, 2] Consider a chemical reaction system following mass-action kinetics. Then, for all choice of
rate constants, the system has exactly one equilibrium concentration in each positive stoichiometric compatibil-
ity class and that equilibrium concentration is locally asymptotically stable.

By applying the theorem 1, we can know that when we assume CRN (2) follows the mass-action kinetics,
then it has the unique equilibrium which is locally asymptotically stable. This deficiency zero theorem is a
fundamental theorem for constructing arbitrary CRN, because the convergence for the equilibrium is important
for every biochemical reaction systems. We could easily imagine that when the equilibrium is unstable or does
not exist, then the concentration of some chemical species will blow up or becomes zero, which will cause
serious problem for biological objects.

One may ask, since the equilibrium point unique, is it globally asymptotically stable? This question is
called Global attractor conjecture, and still left unknown. Prof. Gheorghe Craciun from the University of
Wisconsin-Madison claims that he proved it, but it is not published yet [3].
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2.3 Absolute Concentration Robustness : Properties of steady-state from the structure
The story for this topic is quite interesting. Someday, a group of biologist were doing some experiment

using E. coli. They put some amount of chemical species, and measured the concentration after very long time.
They repeated this experiment by changing the initial amount of chemical species. But the problem was that,
even though they change the initial amount, the concentration of some species after long time does not changed.
Biologists thought that they were doing something wrong with the experiment, but it turns out that it was not
the problem of experiment.

Starting with the toy example, let’s think about the following reaction network

A+B
α−→ 2B

B
β−→ A

then,

d[A]

dt
= −α[A][B] + β[B]

d[B]

dt
= α[A][B]− β[B]

Then at the steady-state, d[A]
dt = d[B]

dt = 0. therefore, the unique steady-state is

¯[A] =
β

α
¯[B] = Θ− ¯[A]

where Θ = [A]0 + [B]0. i.e., no matter what initial values are, the concentration of A converges to the same
value. For this case, we say that this systems has absolute concentration robustness for A.

Theorem 2. [4] Consider a chemical reaction system following mass-action kinetics and admits a positive
steady-state. Suppose the deficiency of this reaction network is one. If, in the network, there are two non-
terminal nodes that differ only in species S, then the system has absolute concentration robustness in S.

The biological example to apply this theorem is the E. Coli EnvZ-OmpR system.

X
k1[T ]
↼−−−−−−⇁
k−1

XT
k2−→ Xp

Xp + Y
k3↼−−−−⇁

k−3

XpY
k4−→ X +Xp

XT + Yp
k5↼−−−−⇁

k−5

XTYp
k6−→ XT + Y

(3)

Calculating the deficiency of CRN 3 gives

• n = 9

• ℓ = 3

• s = 5

gives δ = 9− 3− 5 = 1. Also, the blue complexes are non-terminal nodes and the red complexes are terminal
nodes. The node XT and XT +Yp are the non-terminal nodes that differ only one species Yp. Therefore, by the
theorem 2, the system has absolute concentration robustness in Yp, meaning that the steady-state concentration
of Yp is not affected by the initial concentrations.

Going back to the first story, it turns out that the biologist were not doing anything wrong. Instead, the
structure of biochemical reaction network itself has such properties. This is the background story of how the
reference paper [4] could be published in Science.
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2.4 Law of localization : Biological meaning from the structure
Starting from the toy example, let’s think about the following dynamical system

dx1(t)

dt
= x2(t) + u(t)

dx2(t)

dt
= −2x1(t)− 3x2(t)

y(t) = 2x2(t)

(4)

Let’s think that u(t) is the environmental factor for this dynamical system, and y(t) is the output of the system.
Calculating the steady-state, we get

x̄2 = −u(t)

x̄1 = −3

2
x̄2 =

3

2
u(t)

ȳ = −2u(t)

i.e., the steady-state value of y is affected by the environmental factor u(t). But when thinking about the
following system,

dx1(t)

dt
= −2x1(t) + 2u(t)

dx2(t)

dt
= −x2(t) + 2u(t)

y(t) = 2x1(t)− x2(t)

(5)

then the steady-state values are

x̄2 = 2u(t)

x̄1 = u(t)

ȳ = 2 · u(t)− 2u(t) = 0

i.e., the steady-state value of y is independent from the environmental perturbation u(t). But notice that this
independence is highly dependent on the parameters. i.e., when the dynamic equation for y changes as y(t) =
3x1(t)− x2(t), then the independence is no longer satisfied.

For the last toy example, let’s consider the following dynamical system.

dx1(t)

dt
= x2(t)

dx2(t)

dt
= −2x1(t)− 3x2(t) + u(t)

y(t) = 2x2(t)

(6)

then the steady-state values are

x̄2 = 0

x̄1 =
1

2
u(t)

ȳ = 0

i.e., the steady-state value of y is independent from u(t). Notice that this independence is also independent from
the choice of parameters.

So, for the (4), we say that the dynamical system has no perfect adaptation. For the (5), we say the
dynamical system has Finely-tuned perfect adaptation, meaning that such perfect adaptation can be only
achieved when the parameters are finely tuned. And for the (6), we say the dynamical system has Robust
perfect adaptation (RPA), meaning that such perfect adaptation is robust from the choice of parameters. Notice
that the absolute concentration robustness and RPA are different mathematical topics. Absolute concentration
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robustness is about maintaining same steady-state value regardless of the different initial concentrations, and
RPA is about maintaining same steady-state value from the environmental perturbation.

RPA is not only mathematically interesting, but also biologically important. As mentioned before, the
parameters for each reaction depends on environmental conditions such as the activity of enzyme or the temper-
ature. Despite those environmental perturbation, biological object maintains the homeostasis of certain impor-
tant factors. So, the question that ’When does the RPA take place?’ could discover the origin of homeostasis in
biology.

Theorem 3. [5] Suppose we are representing the CRN by hypergraph. i.e., each chemical species are the nodes
for the hypergraph. From given CRN, if we pick subnetwork γ which satisfies the following two conditions,

• If the subnetwork γ contains some chemical species X , then all reactions whose reactant contains X are
contained in γ. This is called output-completeness.

• - (number of species in γ) + (number of reaction in γ) - (number of closed cycle contained in γ) = 0. We
call this value as influence index.

then the steady-state concentration of all chemical species outside γ exhibits RPA from the reaction parameters
inside γ. In other words, the affect of the parametric perturbation is localized inside γ. And this holds for any
choice of kinetic law and parameters.

We call such γ as Buffering structure, which is a structual buffer that localizes the effect of perturbation
inside it. For example, consider the following CRN

0 A B C

D

0
1 2 3

45
6

and we pick γ = {A,B,D, 2, 3, 4, 5}. Then,

• Since we pick A,B,D, we contain every reaction whose reactant contains them (reaction 2, 3, 5)

• number of species = |{A,B,D}| = 3, number of reactions = |{2, 3, 4, 5}| = 4,
number of cycle = cycle consisted of reaction 2, 3, 4, 5 = 1. Therefore the influence index is −3+4−1 = 0.

Therefore, by theorem 3, the parameter perturbation of reaction 2, 3, 4, 5 does not affect the steady-state con-
centration of C, the chemical species outside γ. The counter-intuitive fact is that the parameter of reaction 3 and
4, which affects the concentration of C, does not affects the steady-state concentrations. We could also check
this property by numerically solving the ODE system.

Figure 1: Time-varying concentration of each chemical species within parameter perturbations

Fig, 1 shows the numerical solution of ODE of the example. We made parametric perturbation by mul-
tiplying 2 to the parameter of reaction 4 at t = 10, and dividing 5 to the parameter of reaction 5 at t = 75
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(red vertical dotted lines). As we can observe, the steady-state concentrations of A, B and D changes after
perturbation, but the steady-state concentration of C does not changed (blue horizontal dotted lines).

One important thing is that the theorem 3 holds for any kinetic law and parameters. In real biology, no
one knows whether some reaction follows specific kinetic law such as mass-action kinetics, Michaelis–Menten
kinetics, etc. However, for many researches in CRN, we assume specific kinetic law to analyze mathematically.
However, this theorem is independent from the choice of kinetic law, which makes it to be widely used.

Another important aspect of this theorem is the role of buffering structure. When we use machines such as
calculator, cell phone, etc, we give some input to the machine and expect some specific output, no matter what
the internal voltage, current, and resistance values are. Similarly, buffering structures gets some input and makes
output. And those steady-state outputs values exhibit RPA with respect to the internal parametric perturbation
such as the activity of enzyme, genetic mutation, etc. So, buffering structure works as some machine.

When applying this theorem to the realistic biological example, something interesting happens.

Figure 2: Buffering structures in the central metabolic pathway of E. coli.

Fig. 2 is the central metabolic pathway of E. coli. And the colored subnetworks are the buffering structures
in the central metabolic pathway. The yellow subnetwork is the minimal buffering structure, the union of yellow
and red subnetwork is another buffering structure. Also, the blue subnetwork (except reaction 1) is another
buffering structure, and the union of yellow, red, green and blue subnetwork is the last buffering structure.

Interestingly, those buffering structures already have a biological name. We call blue subnetwork as tri-
carboxylic acid cycle, the yellow subnetwork as pentose phosphate pathway, and the green subnetwork as
glycolysis. Those names were given by biologists, who named those subnetworks by their distinct functions.
So, before knowing anything about buffering structures, the biologists distinguished some subnetworks
by their biological functions. And it turns out that they were actually buffering structures that works as
a machine.

This theorem shows how CRN could give impact to the systems biology, and tells us about the structural
origin of biochemical reactions in real biological systems.

3 Stochastic chemical reaction network

3.1 Backgrounds
In the deterministic CRN, we modeled the concentration of each chemical species. But modeling with

deterministic CRN has some problems. One major problem is that deterministic CRN does not capture the

7



randomness of biochemical reactions, so that the deterministic CRN becomes unrealistic when it is applied to
small systems.

For example, we can deterministically model the SIR model as the following

dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI

and the solution for this ODE will be some smooth function. But imagine we apply SIR model to our MATH
495 classmates. SIR model will predict, for example, (S, I,R) = (1.2, 4.3, 10.5) for some timepoint. But how
can 1.2 number of people exist? The number of population should be non-negative integer. What really happens
is that sometimes the population becomes (S, I,R) = (5, 5, 6), sometimes becomes (S, I,R) = (6, 4, 6),
and sometimes becomes (S, I,R) = (16, 0, 0).

In this sense, it is more natural to think about the probability of each state, and describing the dynamics of
CRN on the state-space. In general, the state space I will be

I = Z|S |
≥0

and the jump between states will be the stiochiometric vector. Also, we consider a slightly different form of
mass-action kinetics, which is defined as

c1X1 + c2X2 + · · ·+ cmXm → · · · : kn1(n1 − 1) · · · (n1 − c1 + 1) · · ·nm(nm − 1) · · · (nm − cm + 1)

= k
n1!

(n1 − c1)!

n2!

(n2 − c2)!
· · · nm!

(nm − cm)!

where ni denotes the number of Xi. We can notice that if ni is less than ci, then the reaction rate becomes zero,
which means that the reaction does not fires.

In these setting, we could model the dynamics of system by continuous-time Markov chain. The state
for the number of each species corresponds to the state, and the reaction rate in each state corresponds to the
transition rate (especially, the Q-matrix of the continuous-time Markov chain). The steady-state corresponds to
the stationary distribution of continuous-time Markov chain, and the stability of steady-state corresponds to the
ergodicity (i.e., positive recurrent) of the continuous-time Markov chain.

For example, when we construct the continuous-time Markov chain for the example 2, then the state space
becomes

I = {(a, b, c) | a, b, c ∈ Z≥0} = Z3
≥0

and the Q-matrix becomes

Q(a1,b1,c1),(a2,b2,c2) =



k1 if a2 = a1 + 1, b2 = b1, c2 = c1

k2 if b2 = b1 + 1, a2 = a1, c2 = c1

k3a1 if a2 = a1 − 1, b2 = b1 + 1, c2 = c1

k4b1 if a2 = a1, b2 = b1 − 1, c2 = c1

k5a1b1 if a2 = a1 − 1, b2 = b1 − 1, c2 = c1 + 2

k6c1(c1 − 1) if a2 = a1 + 1, b2 = b1 + 1, c2 = c1 − 2

−(k1 + k2 + k3a1 + k4b1 if a2 = a1, b2 = b1, c2 = c1

+k5a1b1 + k6c1(c1 − 1))

0 otherwise

Here, I would like to emphasize two things.

• When we say some stochastic CRN is ergodic, we are considering the case where both mean and variance
of the distribution is finite. There are some cases where mean converges to finite value but the variance
diverges. In this case, we don’t say that the stochastic CRN is ergodic.

• Sometimes people think that the mean of the distribution of stochastic CRN would be same with the
concentration value from the deterministic CRN. But it is not true in general.
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3.2 Relationship between Stochastic and Deterministic Models
Let’s think again about applying the SIR model. When we apply SIR model for only few people, then there

are too many randomness so that it is hard to determine which state will the model would be. However, when
we apply SIR model for the entire US, we could imagine that the fraction of each susceptible, infectious, and
recovered population will have fewer randomness.

We can ask the same question to the deterministic CRN and stochastic CRN. In some sense, if we increase
the total volume, then does the stochastic CRN converges to deterministic CRN? And the answer is yes.

Theorem 4. [6, 7, 8] Let X(t, x0) be the solution of the initial-value ODE problem of

∂X(t, x0)

∂t
= F (X(t, x0)), X(0, x0) = x0

which corresponds to the dynamics of deterministic CRN (e.g. (1)). And let XV (t) be the continuous-time
Markov chain of corresponding stochastic CRN with V amount of volume. If

lim
V→∞

V −1XV (0) = x0

then,

lim
V→∞

P{sup
s≤t

|V −1XV (s)−X(s, x0)| > ϵ} = 0

for every t and ϵ > 0.

We could consider the volume V as the following : for the reaction involving m molecules, the chance
that all m molecules react during the certain time interval is proportional to 1/V m−1. The reason for this
assumption can be intuitively seen by considering the probability of m balls placed at random in n boxes all
ending up in the same box. Theorem 4 says that as the volume size increases, if the initial number of species
per unit volume converges to the initial value of deterministic CRN, then the number of species per unit volume
at any timepoint converges to the concentration calculated from the deterministic CRN.

3.3 Deficiency Zero theorem
Here, let’s look at another theorem which shows the relationship between deterministic and stochastic CRN.

Theorem 5. [9] Suppose that the CRN has deficiency zero and weakly reversible and follows mass-action kinet-
ics. Then the corresponding continuous-time Markov chain is positive recurrent and has a stationary distribution
consisting of the product of Poisson distributions,

π(x) =

m∏
i=1

cxi
i

xi!
e−ci , x ∈ Zm

≥0 (7)

where ci’s are the equilibrium points determined by modeling the same reactions by deterministic CRN. Also,
if Zm

≥0 is irreducible, then this is the unique stationary distribution. If Zm
≥0 is not irreducible, then the stationary

distribution has the form on the state space Γ

πΓ(x) = MΓ

m∏
i=1

cxi
i

xi!
e−ci , x ∈ Γ (8)

where πΓ(x) = 0 if x /∈ Γ, and MΓ is the normalizing constant.

So, by applying theorem 5 to the CRN (2), we could know that it converges to the stationary distribution,
which is the product-form of Poisson distributions. Performing the simulation of CRN (2) using the Gillespie’s
algorithm [10] shows the following trajectories and stationary distributions.
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(a) Species A (b) Species B (c) Species C

Figure 3: Time-trajectory of 20 simulations of (2)

(a) Species A (b) Species B (c) Species C

Figure 4: Stationary distribution of 5000 simulations of (2)

We can check from Fig. 4a and 4b that the stationary distribution actually follows the Poisson distribution.
Note that the CRN (2) changes the number of C by two units, which makes Zm

≥0 not irreducible. That’s the
reason why Fig. 4c is not fully Poisson-distributed.

3.4 Robust perfect adaptation and Antithetic Integral Feedback controller
One problem of stochastic CRN is that it is hard to know the distribution. In deterministic CRN, the concen-

tration is just the solution of ODE, but in stochastic CRN, the solution is probability distribution. Then, what
about we can control the mean of the distribution?

Theorem 6. [11, 12] Suppose every reaction follows mass-action kinetics. Consider the original reaction
network and assume that for some given values of its parameters, the original reaction network is ergodic.
When we add the four additional reactions

0
µ−→ Z1

Xℓ
θ−→ Xℓ + Z2

Z1 + Z2
η−→ 0

Z1
k−→ Z1 +X1

(9)

where Xℓ and X1 are species from original reaction network, and there exists a sequence of reactions from X1

to Xℓ. Then, after adding those four reactions

E[Xℓ] =
µ

θ

at the stationary distribution. Also, this value achieves RPA from the parametric perturbation of original reaction
network. Moreover, in order to make arbitrary controller that such RPA is satisfied, then the four reactions (9)
are necessary.

In other words, no matter what the distribution of original CRN looks like, when we attach four reactions
(9), we can control the mean of the stationary distribution of certain chemical species Xℓ. And we call those
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four reactions (9) as Antithetic Integral Feedback controller. The statement of this theorem has been slightly
modified for better understanding, and the full statement can be seen at Theorem 7

This theorem is also experimentally showed. In the reference paper [12], the authors generated a real
biological circuit using the synthetic biological technology.

(a) Reaction network with controller (b) Reaction network without controller

Figure 5: Biochemical reaction with and without controller (9)

(a) Concentration with controller (b) Concentration without controller

Figure 6: Time-trajectory of concentration within environmental perturbation

In [12], the authors measured the number of araC by capturing the intensity of fluorescence from sfgfp,
which is generated simultaneously with araC. When the reaction network contains the structure of antithetic
integral feedback controller (Fig. 5a), then the concentration of output exhibits RPA (Fig. 6a). However, when
the reaction network does not have a controller structure (Fig. 5b), then the concentration of output does not
exhibit RPA (Fig. 6b).

4 Conclusion
In this report, we have a slight overview about the chemical reaction network theory. We look through

deterministic CRN and stochastic CRN, and the important research topics for each area. I would like to com-
pare deterministic CRN and the stochastic CRN as the following : deterministic CRN is more convenient to
check simple properties, so that it could be deeply mathematically studied. These days, the deterministic CRN
becomes tightly related with the algebraic geometry. On the other hand, stochstic CRN is more hard to check
simple properties, but they are more realistic than deterministic CRN.

There are still many interesting questions about this area. For example, in the deterministic CRN, can we
find necessary and sufficient condition for the existence of locally asymptotically stable equilibrium point? What
properties does the equilibrium point have? How fast does the dynamical system converges to the equilibrium
point? In the stochastic CRN, how can we calculate the exact form of the stationary distribution? How does the
mixing time of corresponding continuous-time Markov chain connected to its network structure? How can we
check the ergodicity of continuous-time Markov chain from its network structure?
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Not only these mathematical questions, CRN could answer the problem from biology [4], and also purpose
new biochemical reactions to obtain some properties [12]. It would be interesting to see how does the CRN and
systems biology will cooperate and developed in the future.
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5 Appendix

5.1 Proof of Theorem 3
Let S be the stiochiometric matrix (c.f., (1)). If the CRN is at the steady-state, the concentration of all

chemical species does not change. Therefore,

Sr(t) = 0 → r(t) ∈ ker(S)

In other words, the rate vector r(t) can be written as

r =

N∑
n=1

µncn

where dim(ker(S)) = N , cn are the basis of ker(S) and µn are coefficients.
Perturbation of the parameter can be written as kj → kj + δkj . then,

d

dkj
r =

N∑
n=1

dµn

dkj
cn

and we can rewrite this as

d

dkj
ri =

∂ri
∂kj

+

M∑
m=1

∂ri
∂xm

dxm

dkj

where ∂ri
∂kj

denotes the direct effect (nonzero only when i = j), and ∂ri
∂xm

dxm

dkj
denotes the indirect effect (pa-

rameter perturbation affects chemical species, and then it affects the reaction rates).
So, we can write

d

dkj
ri =

N∑
n=1

dµn
i

dkj
cn =

∂ri
∂kj

+

M∑
m=1

∂ri
∂xm

dxm

dkj

therefore,

M∑
m=1

∂ri
∂xm

dxm

dkj
−

N∑
n=1

dµn
i

dkj
cn = − ∂ri

∂kj

When we write this as a matrix,


∂r1
∂x1

∂r1
∂x2

· · · ∂r1
∂xM

∂r2
∂x1

∂r2
∂x2

· · · ∂r2
∂xM

−c1 −c2 · · · −cN
...

... · · ·
...

∂rR
∂x1

∂rR
∂x2

· · · ∂rR
∂xM





∂x1

∂k1

∂x1

∂k2
· · · ∂x1

∂kR
∂x2

∂k1

∂x2

∂k2
· · · ∂x2

∂kR

...
... · · ·

...
∂xM

∂k1

∂xM

∂k2
· · · ∂xM

∂kR
∂µ1

1

∂k1

∂µ1
2

∂k2
· · · ∂µ1

R

∂kR

...
... · · ·

...
∂µn

1

∂k1

∂µn
2

∂k2
· · · ∂µn

R

∂kR


=


− ∂r1

∂k1
· · ·

... ∂r2
∂k2

· · ·
...

...
... · · · − ∂rR

∂kR



simply writing,

[
∂ri
∂xm

−cn
]dxm

dkj
dµn

i

dkj

 = −diag(
∂r1
∂k1

· · · ∂rR
∂kR

)

and the left matrix is called A-matrix. Note that we are interested in dxm

dkj
where m is the species outside

buffering structure and j is the reaction inside buffering structure.
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Since (number of reaction) = (number of chemical species) + (number of closed cycle) for the buffering
structure, and by the output-completeness, choosing the proper basis for the ker(S) and the ordering of the
basis leds the A-matrix as the following structure

A =

[
∗ ∗
0 ∗

]
where the upper-left submatrix is the square matrix with size (number of reaction) × (number of chemical
species + number of closed cycle). Note that (1) output-completeness means the chemical species inside the
buffering structure does not affect the reaction outside the buffering structure, and (2) closed cycle generates
a basis of ker(S) associated with the reactions consisting of the closed cycle. These two factors induces the
lower-left submatrix to be zero matrix. Therefore,dxm

dkj
dµn

i

dkj

 = −A−1diag(
∂r1
∂k1

· · · ∂rR
∂kR

)

where

−A−1 =

[
A−1

Γ ∗
0 A−1

Γ̄

]
Note that the column index for A−1

Γ contains the reactions inside buffering structure, and the row index for A−1
Γ̄

contains the specied outside buffering structure. Therefore, when we pick m be the species outside buffering
structure and j be the reaction inside buffering structure,

dxm

dkj
∝ A−1

mj = 0

which completes the proof.

5.2 Ideas for the proof of Theorem 6
For some Markov process X , define

Tif(i) = E[f(X(t)) | X(0) = i]

for any real-valued function f , where i denotes the state for continuous-time Markov chain. Then the infinites-
imal generator A is defined as

Af(i) = lim
t→0

Tif(i)− f(i)

t

When calculating the infinitesimal generator of stochastic CRN, it becomes

Af(x) =
R∑

k=1

λk(x)(f(x + ζk)− f(x))

where λk(x) denotes the rate for reaction k at state x, and ζk denotes the stiochiometric vector of kth reaction.
Taking the inner product with the stationary measure π, we get

⟨Af(x), π⟩ = 0

Let the original CRN is consisted of X1 · · ·Xd species and R reactions. When we attach four additional
reactions (9), the infinitesimal generator of the corresponding continuous-time Markov chain becomes

Af(x, z1, z2) =
R∑

k=1

λk(x){f(x + ζk, z1, z2)− f(x, z1, z2)}

+ kz1{f(x + e1 + z1, z2)− f(x, z1, z2)}
+ µ{f(x, z1 + 1, z2)− f(x, z1, z2)}
+ θxℓ{f(x, z1, z2 + 1)− f(x, z1, z2)}
= ηz1z2{f(x, z1 − 1, z2 − 1)− f(x, z1, z2)}

14



Then, if we pick f(x, z1, z2) = z1 − z2, then

Af(x, z1, z2) = µ− θxℓ

therefore,

⟨Af(x, z1, z2), π⟩ = µ− θEπ[Xℓ] = 0

therefore,

Eπ[Xℓ] =
µ

θ

Of course, we can choose any real-valued function f to find the properties of the stationary distribution. For
example,

f(x, z1, z2) = z1 → Eπ[Z1Z2] =
µ

η

f(x, z1, z2) = z21 → Eπ[Z
2
1Z2] =

µ

η
(1 + Eπ[Z1])

f(x, z1, z2) = z22 → Eπ[Z1Z
2
2 ] =

µ+ θEπ[XℓZ2]

η

So the remaining problem is ergodicity. The main idea is to divide whole state space Z|S |
≥0 into subareas, and

construct Lyapunov function for each subarea. Then check that the Lyapunov criteria is satisfied for 1) state
transition inside each subarea and 2) state transition among other subarea. Doing it, the full statement of the
Theorem 6 is as following.

Theorem 7. [11] Assume that the state space of the original reaction network is irreducible and that there exists
v ∈ Rd

>0 , w ∈ Rd
≥0, w1, wℓ > 0, a positive scalar c2 and nonnegative scalars c1, c3, c4, c5, c6 such that

R∑
k=1

λk(x)⟨v, ζk⟩ ≤ c1 − c2⟨v, x⟩

R∑
k=1

λk(x)⟨w, ζk⟩ ≥ −c3 − c4⟨eℓ, x⟩

and

R∑
k=1,⟨v,ζk⟩>0

λk(x) ≤ c5 + c6⟨v, x⟩

R∑
k=1,⟨w,ζk⟩>0

λk(x) ≤ c5 + c6⟨v, x⟩

hold for all x ∈ Nd
≥0. Then, the reaction network after attaching four reactions (9) is ergodic provided that

µ
θ > c1

c2vℓ
and, in such a case, we have that E[Xℓ(t)] → µ/θ as t → ∞.

15


	Introduction
	Deterministic chemical reaction network
	Backgrounds
	Deficiency Zero theorem : Existence of stable steady-state from the structure
	Absolute Concentration Robustness : Properties of steady-state from the structure
	Law of localization : Biological meaning from the structure

	Stochastic chemical reaction network
	Backgrounds
	Relationship between Stochastic and Deterministic Models
	Deficiency Zero theorem
	Robust perfect adaptation and Antithetic Integral Feedback controller

	Conclusion
	Appendix
	Proof of Theorem 3
	Ideas for the proof of Theorem 6


